Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions
نویسندگان
چکیده
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
منابع مشابه
Traveling slow waves of neural activity: a novel form of network activity in developing neocortex.
Spontaneous neuronal firing during development has the potential to shape many aspects of neuronal wiring throughout the brain. Bursts of electrical activity coordinated among large numbers of neurons, occurring during a brief developmental window, have been described in many regions of the CNS, including retina, hippocampus, and spinal cord, but evidence for this type of activity in developing...
متن کاملContribution of GABAergic Interneurons to the Development of Spontaneous Activity Patterns in Cultured Neocortical Networks
Periodic synchronized events are a hallmark feature of developing neuronal networks and are assumed to be crucial for the maturation of the neuronal circuitry. In the developing neocortex, the early network oscillations coincide with an excitatory action of the neurotransmitter gamma-aminobutyric acid (GABA). A relationship between the emerging inhibitory action of GABA and the gradual disappea...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملCross-scale effects of neural interactions during human neocortical seizure activity.
Small-scale neuronal networks may impose widespread effects on large network dynamics. To unravel this relationship, we analyzed eight multiscale recordings of spontaneous seizures from four patients with epilepsy. During seizures, multiunit spike activity organizes into a submillimeter-sized wavefront, and this activity correlates significantly with low-frequency rhythms from electrocorticogra...
متن کاملSpatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex.
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in neural circuits
دوره 10 شماره
صفحات -
تاریخ انتشار 2016